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SECTION I - REVIEW OF PSYCHOPHYSICALLY BASED
IMAGE QUALITY METRICS

INTRODUCTION:

There have been many advances in imaging technologies resulting in a variety of

techniques for generation, coding for transmission, image processing, decoding, and

display of information. The purpose of these systems is to generate images such that

observers can extract relevant information; therefore, it is necessary to consider

human observer requirements. Models of the human visual system have been used

during development of the variety of techniques referred to above. However, in

addition to the development of techniques, investigators have recognized the need for

quantitative measures of image distortion and/or image quality corresponding to

observer performance and observer impressions of the images. Quantitative measures

of image quality have the potential for reducing the need for multiple experiments to

test the variety of image processing techniques that may be applied to an image, but

still enable verification of the technique in terms of human requirements. The purpose

of this report is to review current psychophysically based measures of image quality

for possible application to compressed or transmitted sensor imagery.

Although some image quality metrics have been based only on physical measures of

the image, many are based on models of the human visual system. Section II of this

report briefly introduces human visual models that are often used in image quality

metrics. Section III describes many image quality metrics including research results



of studies using these metrics. An additional important consideration for use of

metrics is the type of performance measures that are to be correlated with the metric.

The metrics are developed in hopes of being highly correlated with human

performance and/or perception; however, research has not focused on the need for

investigating task performance measures. Section IV discusses this issue.

Recommendations for application of metrics to digitally compressed imagery are

summarized in Section V.
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SECTION II - HUMAN VISION MODELS

Many image quality metrics have been based only on physical measures of the image

and do not take into consideration the workings of the human visual system. It is

therefore not surprising that these metrics do not correlate well with human

performance. Many vision models deal with representation of the human response to

spatial inputs, such as static spatial variation in luminance. Spatial frequency (SF)

models are the primary models used in current image quality metrics. It should be

noted that human vision models have been developed for early stages of vision and

do not take into consideration higher levels of cognitive processing. This section

discusses approaches to modelling the human visual system. Application of these

models to image quality metrics will follow in the succeeding section.

Contrast Threshold Function (CTF):

Linear systems analysis and the mathematics of Fourier transforms have been applied

to the analysis of imaging systems to determine the modulation transfer function

(MTF) of the system. Modulation is defined as:

M- Lmx-Ln(1)
Lnw +Lmn

where LmaX is the maximum luminance and L,, is the minimum luminance of a

sinusoidal signal. With linear systems analysis, it is possible to determine the extent

to which any component or system of components can transmit a signal. During

3



transmission, some of the signal is lost due to limitations in the system. The

modulation transfer factor is the ratio of the modulation out of the system to the

modulation into the system,

T(c,v) - Mo(Wv) (2)

MACA,V)

where T (w, v) is the modulation transfer factor at spatial frequencies w, v and M. and

M, are the output and input modulations respectively. If the modulation transfer factor

values at each spatial frequency are connected, a continuous function is formed

termed the modulation transfer function (MTF). The loss of output modulation

generally increases with increasing frequency of the sine wave input (see Figure 1).

The concepts of !inear systems analysis have been applied to the visual system. An

observer is presented with a known sine wave pattern that is varied in spatial

frequency and is asked to adjust the luminance modulation of the grating to visual

threshold. When results are plotted as a function of spatial frequency, the function

is termed the contrast threshold function (CTF) as illustrated in Figure 2. This

technique can be considered a "black box" approach to modelling the visual response.

To fit experimental data, Dooley (1975, cited by Levine, 1985) developed the

following equation for the CTF,

CTF(( )-5.05(e-°'l )(e°'1) (3)
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where & is the spatial frequency in cycles per degree of visual angle. This equation

has been normalized to the peak modulation of 0.005.

Beaton (1988) also provides an equation for the CTF based on experimental data for

young eyes and viewing distances greater than 18 inches,

CTF(wa) .bw =*2+" w (4)

where,

bo = 1.7062 x 10-3

b, = 201.6188 x 10 -3

b2 = -2.31616 x 10-3

b3 = 0.20000 x 10'

Research results have illustrated that the CTF will shift as visual parameters are

changed. Variables which cause shifts in the CTF include display luminance,

orientation of the grating, type of wave pattern, and viewing distance, to name a few.

(F or a review of this literature readers are referred to Snyder, 1980). Because the CTF

varies as a function of different parameters, it is important to use a CTF that is similar

to the viewing situation. Therefore, researchers may be required to empirically

determine the CTF for the specific viewing situations.

Results of experiments with the CTF illustrate that the human visual system does not

meet linear systems analysis assumptions of linearity and isotropy. However, linear

7



systems analysis will work if the response is considered at least linear in the range

investigated. It has also been argued that the CTF is a threshold measure and may

not apply well to suprathreshold levels that humans deal with in real-life situations.

However, Ginsburg, Cannon, and Nelson (1980) and Decker (1989) illustrated that

CTF can represent suprathreshold processing as well. Given the above assumptions,

the CTF approach is feasible and has resulted in good correlations with performance

when used with image quality metrics.

Weber-Fechner Fraction and Steven's Power Law:

The visual response to intensity is nonlinear, and the nonlinearity is thought to take

place at the photoreceptor level of processing. Psychophysical models of the

nonlinear response have been investigated for many years. In 1886, Weber presented

subjects with a background of intensity I and a target against the background of

intensity I + Al. Subjects were instructed to determine when they could just detect

a difference between the background and target (just noticeable difference, JND).

Weber found that the proportion by which the stimulus I must increase in order to just

detect the difference was a constant such that,

K-.A (5)
I

This formula is termed the Weber fraction (Coren, Porac, and Ward, 1984). However,

this linear equation does not hold for low or high intensity values. Experiments by

Fechner led to a change in the Weber fraction that indicated a logarithmic response

8



and is termed the Weber-Fechner fraction.

K- AI (6)
logI

This fraction indicates that it requires a small physical change to achieve one JND for

a weak stimulus and a larger change to achieve one JND for a stronger stimulus. The

logarithmic relationship has long been included in many models of human vision.

Stevens (1961, cited by Coren et. al., 1984) proposed a power law to explain

psychophysical responses to stimuli. The human response is related to input intensity

(I) as,

S-K(II) (7)

where S is the sensation or response, K is a constant, 1, is absolute intensity at

threshold, and n is an exponent which varies depending on the sensory input (e.g.,

hearing, visual, tactile). If n < 1, the curve is concave downward and indicates that

the more intense a stimulus the greater that stimulus must be changed to produce the

same response. The psychophysical response to brightness results in exponents less

than 1.

Model of Monochromatic Vision:

Hall and Hall (1977) developed a model of the visual system to match the results of

the contrast sensitivity tests for monochromatic vision. Their model is based on

models originally discussed by Stockham (1972) and Mannos and Sakrison (1974).

9



The model is composed of three subsystems as illustrated in Figure 3. The first

subsystem represents the ocular optical system and is a low pass filter defined as

HIM- 2a (8)
a2+0)2

where, a =)7A is the spatial angular frequency. The value of alpha depends upon the

pupil diameter. For a white light and pupil diameter of 3 mm, a = 0.7.

The second subsystem describes the nonlinearity of the visual system. Hall and Hall

used a logarithmic process. Mannos and Sakrison (1974) proposed a power function

at this stage of the model.

The third subsystem is the high pass filter. It is employed to take into consideration

lateral inhibition and is defined by the following equation:

H 2 W + 1 2( 9 )2aoa+ (1 -aj(a+ a)

where ao is a constant distance factor relating to the distance between photoreceptors

and a is a strength of inhibition factor. Hall and Hall set parameters a, = 0.01 and

a = 0.2 to match the CTF results reported by Davidson (1968, as cited by Hall and

Hall, 1977).

Multichannel Spatial Frequency Models:

Multichannel models assume that the visual system is composed of multiple

10



Low Pass Filter Nonlinearity High Pass Filter
Ocular Optical System Laterial Inhibition

Figure 3: Monochromatic visual model (from Hall and Hall, 1977).
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independent narrow-band channels. Each channel consists of a collection of cells over

the retinal field. Each channel has a specific bandwidth and center frequency such

that each channel is sensitive to a different range of spatial frequencies. The

bandwidths are expressed in octaves. When the channels are pooled, results predict

the CTF of human vision. (Wilson and Bergen, 1979). Currently, the multi-channel

vision model has the most support and a great deal of research has been published

specifying these channels.

1

12



SECTION III - IMAGE QUALITY METRICS

There are different criteria for evaluating an image or for evaluating the techniques for

generating or processing an image. Criteria may include length of processing time, or

computational resources required. Some metrics are developed to measure the

physical differences between an original image and a processed image. These types

of criteria or metrics do not take into consideration how the observer will perform

when viewing the image and are sometimes referred to as image fidelity measures.

This section will discuss metrics that have been developed based on psychophysical

techniques which incorporate the visual models described previously.

MTF Based Metrics:

This section describes metrics which were originally developed for continuous tone

film images and were later applied to cathode ray tube (CRT) images. These metrics

have been described fully by Task (1979), Beaton (1984) and Decker, Pigion, and

Snyder (1989). The metrics described are those which take into consideration the

visual system or have been behaviorally validated.

Many studies investigating metrics concentrate on one metric and report results.

Comparison of metrics across studies is not always possible because of experimental

differences. However Task (1979) and Beaton (1984 conducted research comparing

a variety of metrics using the same imagery for each metric.

13



Task (1979) compared metrics for film and video images using three types of target

detection and recognition studies. In this research, the quality of the image was

changed by changing the system MTF. Beaton (1984) also examined a variety of

metrics for hard copy images as well as CRT displayed images. In this research,

digital images were used and were degraded by blur and noise. Two tasks were

employed for photointerpreters, a subjective rating scale task, and an information

extraction task. Results from studies conducted by Task and Beaton will be reported

as each metric is discussed. Additional metrics from other sources will also be

discussed.

Modulation Transfer Function Area (MTFA):

The modulation transfer function area (MTFA) metric combines the MTF of an imaging

system and the visual contrast threshold function (CTF). This metric has received

much attention and research results indicate that this metric correlates well with

performance. The MTFA can be described as the area between the zero spatial

frequency and the crossover frequency of the two curves. The crossover frequency

is the "limiting resolution." The MTFA is illustrated in Figure 4. The MTFA is defined

as,

W-f v-f
MTFA-AwAv [T(o)v)-T'(W,v)] (10)

W)--f V--1

14
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Figure 4: The modulation transfer function area (MTFA) concept (From Decker, Pigion,
and Snyder, 1989).
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where, T. (w, v) is the composite MTF of the imaging system. T. (w, v) is the CTF,

and f is the spatial frequency where the MTF and CTF have the same value or the

"limiting resolution."

Both Beaton (1984) and Task (1979) evaluated the MTFA. Table 1 summarizes the

correlations between the MTFA metric and the different performance measures for

both studies.

Table 1. Correlations between MTFA and task performance measures.

Display Media Performance Measure MTFA Correlation
(R2 )

Film angle subtended at -0.95 (log MTFA)
recognition

CRT angle subtended at -0.878 (log MTFA)
recognition

CRT slant range at 0.866 (log MTFA)
detection

CRT* Information extraction 0.79

where CRT* is digitally addressed CRT.

Note that the MTFA metric gives the highest correlation for film. Other studies have

shown correlations ranging from 0.211 to 0.97 for CRT displayed images (Decker, et

al., 1987).

16



More recently Task and Pinkus (1987) evaluated the MTFA using a target detection

task. They varied the MTF of the video display system to include low and high

contrast conditions. The CTF's for each subject were measured at 8 spatial

frequencies. The stimuli were presented using 16mm motion picture film displayed

on a white phosphor monochrome television display. Correlations between MTFA and

detection recognition for low and high contrast conditions were -0.269 and 0.005

respectively. Correlations for combined low and high contrast conditions were -

0.575. This study indicated a lack of correlation. However, it should be noted that

stimuli were not static images. The target was zoomed at a fixed rate until the

subject recognized the target. A metric for dynamic image quality may be needed in

this case.

Gray Shade Frequency Product (GSFP):

This metric was proposed by Task and Verona (1976). The MTFA assumes that the

excess MTF over the CTF is isotropic for all spatial frequencies and all modulations

above the threshold CTF. Beamon and Snyder (1975) suggested that the area just

above the CTF is more important to the observer because it is important to have a

modulation above the minimal required but increases in excess MTF are not important

in most tasks. The GSFP is a nonlinear transform of the MTFA to weiyhl the area

near the CTF more heavily. This metric models the visual system as a logarithmic

amplifier such that the visual system "sees" modulations proportional to the logarithm

of the modulation. Modulation is transformed into "shades of gray" G, as follows:

17



G-1 + Ig 10[(1 +M)I(1 -M)] 1)
log1 1(2.0° '5)

where the numerator is the modulation and the denominator is the modulation

between successive shades of gray. It should be noted that the denominator does not

represent a psychophysical "just noticeable difference" between luminance levels

which would perhaps be more appropriate.

The GSFP is defined as:

(-f W-f
GSFP-AoAv, E G[T,(w,v)-T,(Cr,v)] (12)

"--I W"--

Table 2 summarizes the correlations between the GSFP metric and different

performance measures. GSFP does not appear to be advantageous over the MTFA.

Integrated Contrast Sensitivity Function (ICS):

The integrated contrast sensitivity function (ICS) was proposed by van Meeteren

(1973). This metric simply weights the MTF of the system by the contrast sensitivity

function (CSF, the inverse of the CTF) for each spatial frequency.

V-, W-f
ICS-AWAvE E T,(w,v)C,(w,v) (13)

18



where Ci(w, v) is the inverse of the CTF (T.(w, v)).

Results of correlations between ICS and performance are summarized in Table 3.

Table 2. Correlations between GSFP and task performance measures.

Display Media Performance Measure Correlation (R2)

Film angle subtended at -0.858 (log GSFF)
recognition

CRT angle subtended at -0.847 (log GSFP)
recognition

CRT slant range at 0.869
detection

CRT information extraction 0.80

CRT subjective ranking 0.73

Table 3. Correlations between ICS and task performance measures.

Display Media Performance Measure Correlation (R)

Film angle subtended at -0.978
recognition

CRT angle subtended at -0.818

recognition

CRT information extraction 0.95

CRT subjective ranking 0.95

19



The correlations for the ICS metric are higher than the MTFA correlations which is not

unexpected. van Meeteren suggested this metric to be more sensitive to small

changes in the MTF or CSF because multiplication is being used. That is, MTFA and

GSFP subtract the CTF whereas this metric multiplies the values.

Visual Capacity (VC):

The visual capacity metric was introduced by Cohen and Gorog (1974). It is based

on Schade's equivalent passband metric proposed in 1953. The original EP metric

was defined as

n-1 m-1

EP-AoAvE E [7,(OV)J2  (14)
X-o y-O

EP is the equivalent bandwidth of a rectangular MTF containing the same total sine-

wave power as the actual MTF of the imaging system being measured. In other

words, it is the cut-off frequency of a perfect filter passing the same power. The EP

metric is related to the "sharpness" of an image or the width of the edge transitions

in the image. VC is defined as

n-1 M-1

VC-AAoAvj 1 T,(Dv)? T,((Ov)? (15)
x-O y-o

where A denotes the area of the display device and is used to normalize the metric

to express the maximum number of perceived edge transitions. This metric is

designed express the perceptual width of the edge transitions, taking into

consideration the CTF (T.). Beaton (1984) evaluated this metric and results are

20



summarized in Table 4. The table also includes correlations of performance with the

EP metric. Results indicate that including the CTF in the metric results in higher

correlations.

Table 4. Correlations between VC and EP metrics with task performance measures.

Display Media Performance Measures Correlations (R 2)

vC

CRT Information Extraction 0.87

CRT Subjective Ranking 0.90

EP

CRT angle subtended at -0.726
recognition

CRT slant range at 0.761
detection

CRT Information Extraction 0.78

CRT Subjective Ranking 0.69

In formation Content (IC0:

Schindler (1976) used the concept of information theory in development of this

metric. IC is defined as,

R-i rN-1 T(o,v) (6

JC-A WAVE E10g2 11+ I (6

21



where Td refers to the "just-detectable" response level of the imaging system. Beaton

replaced Td with the CTF (To). Results are summarized in Table 5. It would be

interesting to utilize this equation using just noticeable difference responses to digitally

compressed images.

An interesting alternative to using the CTF (T.) in this equation would be to use Just-

noticeable difference responses or magnitude estimation responses to digitally

compressed images. These are psychophysical techniques for determining difference

thresholds, or "just detectable" responses from human observers. The JND or

magnitude estimation function would be empirically derived.

For the JND technique, observers are presented with a range of digitally compressed

images, for example 1 to 8 bits/pixel. One image is presented as the standard. As

images are presented to the subject, they are asked to determine if the image is

"better" or "worse" than the standard in terms of image quality. A function is plotted

which indicates the proportion of "better" responses for each comparison image. This

function could be used in place of (Td).

The magnitude estimation approach is very similar. Subjects are asked to assign a

number to an image based on a dimension of the stimuli. In this example, subjects

could provide a subjective estimation of "quality" of the image, or noise in the image

compared to a standard image. A function is plotted which indicates the magnitude

estimations as a function of compression.
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The difference with this approach as compared to using the CTF is that the CTF is

based on detection of sinusoidal patterns. If a variety of images are used, the

cognitive component is included in the subject's subjective impression of image

content. However, the output functions with this approach are not expressed in

spatial frequency; therefore, the equation would have to be modified.

Table 5. Correlations between IC arid task performance measures.

Display Media Performance Measure Correlation (R)

CRT Information Extraction 0.86

CRT Subjective Ranking 0.84

Signal-to-Noise (SN)

Noise has been shown to effect visual performance. Beaton 1984) defined a signal-

to-noise (SN) metric based on a metric by Hufnagel (1965). (See Beaton, 1984 for

a discussion of Hufnagel's metric.) SN is defined as,

n-1 M-1

SN- X-o Y-o (17)n-1 M-1

[AAv E .5

x-O y-O
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where W is the Weiner noise power spectrum. The Weiner noise power spectrum is

weighted by the CTF. The denominator represents the root mean square deviation of

the perceptually weighted noise signal. This is the only metric which actually directly

measures display noise rather than determining a separate CTF for each noise

condition. Beaton compared this metric with 16 others and the SN metric yielded the

highest correlations with performance. Table 6 summarizes Beaton's (1984) research

findings using this metric.

Table 6. Correlations between SN and task performance measures.

Display Media Performance Measure Correlations

CRT Information Extraction 0.95

CRT Subjective Ranking 0.95

Application to Digitally Compressed Imagery:

The image quality metrics discussed above were developed to determine the image

capability of the display (or system) and the metrics are image independent.

Assuming that a display system is capable of exceeding the capabilities of human

vision, then the need for metrics which quantify the display system would not be

necessary. However, in addition to determining the quality of an imaging device, it
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is also important to determine the effect of image processing (such as compression)

on image quality. The metrics described above do not account for the image

processing technique. However, it is possible to change each metric to an image

dependent metric by using the display modulation spectrum of the image,

n

Mo(wv)-M((),v)"J T(c,v) (18)
i-1

where M. (W, v) is the displayed modulation spectrum and Mi is the input modulation

spectrum of the image, and T, (w, v) is the modulation transfer factor of the system

component i.

Beaton (1984) evaluated the MTFA, GSFP, ICS, EP, IC, and SN metrics using the

image dependent form of the metric. He regressed the metrics on subjective

performance data. The subjective task was the Imagery Interpretability Rating Scale

(1978). Performance scores were first converted to z-scores to account for changes

in scaling strategies for each of the different images. Correlations between subjective

performance and each metric were low, accounting for only 48 - 58% of the variance.

Beaton repeated the correlations using data that were collapsed across images.

Results for this analysis are summarized in Table 7.

The MTFA gave the best predictive capability. The other metrics did not perform well.

However, this should not rule out evaluation of these metrics with digitally

compressed images. If the structure or nonuniformities in compressed images can be
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measured as noise, the SN metric may still provide predictive capabilities.

Table 7. Correlations between image dependent metrics evaluated by Beaton (1984)

and subjective rating performance.

Image Quality Metric R2 Subjective Ranking

MVTFA 0.85

GSFP 0.625

'Cs 0.575

EP 0.25

IC 0.60

SN 0.375

Pixel-Based Metrics:

Techniques used by image processing research for evaluating image fidelity are

metrics that seek to minimize the error variance between an original image and the

coded image. A statistically-based method commonly used is mean square error

(MSE). The MSE metric as well as other pixel-based metrics are image dependent and

do not take into consideration the human visual system. However, they have been

modified by researchers to take into consideration the observer as described below.
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Mean Square Error (MSE):

The mean square error (MSE) metric, frequently used in digital image processing,

measures the difference between an original and modified image and is defined as

n-1 M-i

ACOAVE E [Mo(CO'V)-M.((O'V)r
MSE- X-0 y-o (19)n-1 M-1

AwoAvE E OC.')
x-O y-0

where Mo and Mm refer to modulation spectra of the original image and modified

image. The visual system is sensitive to differences in intensities and to areas in

images where there are abrupt changes in intensity (edges); that is, the intensity and

the gradient are important. However, the MSE metric performs an averaging,

weighing all errors equally independent of the intensity or gradient (Levine, 1985).

Therefore, it is not surprising that the MSE metric does not correlate well with human

performance.

Perceptual Mean Square Error (PMSE):

The PMSE attempts to take the visual system into account. The deviations in the

MSE are weighted by the CSF. PMSE is mathematically defined as

n-i M-I

AcjAvE E C(')M(')M('~]
PMSE- X-0 Y.0 (20)n-I rn-i

AcaAvE EiW
x-O y-0
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Beaton (1984) evaluated this metric and found a low correlation (0.15) between

PMSE and subjective rankings.

Hall (1981) used a similar approach. Original images and degraded images were

transformed using the Mannos and Sakrison vision model (1974). (This model is

similar to the Hall and Hall model discussed in Section II). After transformation, the

MSE between each degraded and original image was determined. The MSE was

correlated with subjective performance resulting in a correlation of R2 = 0.92.

Differences in results between these two studies may be due to experimental

differences or differences in the visual models. Further investigation to compressed

images are needed.

Contrast Energy Difference Metric (CED):

Farrell and Fitzhugh (1990) describe a contrast energy metric (CED) which is also

based on differences. Original and modified images are weighted by the contrast

sensitivity function then the squared differences of corresponding points in the original

and modified image summed across each point in the image.

N

(1_C) 2  (21)
-1
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where I, and Ci refer to corresponding intensity points in the original and modified

images respectively. This metric is also a sum of squared error, but it is not

normalized with a mean.

In this experiment, the signal detection paradigm was used. Subjects were asked to

discriminate between the original image and a modified image. In other words,

identify which was the original and which was the modified image. Correct responses

(hits) and incorrect responses (misses) are recorded. Two probability of occurrence

distributions are determined. One distribution is considered a "noise" distribution (no

signal present). The second distribution is "signal + noise." In this paradigm, d' is

an indication of a person's sensitivity and is measured by the degree of separation

between the two probability distributions expressed in units of standard deviations.

For a review of this paradigm, readers are referred to Gescheider (1985).

Farrell and Fitzhugh (1990) compressed intensities of three capital letters (R, 0 and

an ampersand) into 2, 4, 8, 16, 32, 64, 128, or 256 levels of grey. Subjects were

asked to discriminate between original and modified images using the signal detection

paradigm. Performance of the discrimination task (measured as d') was monotonically

related to the log CED. Data were fitted using the Weibull psychometric function.

The authors provide no explanation for using a log of the function, or for fitting data

to a Weibull function.
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The CED metric does not perform the averaging that the MSE metric does. However,

this metric may be dependent on using discrimination tasks. Many tasks require

extraction of information, not determination of differences between images.

Farrell, Trontell, Rosenberg, and Wiseman (1991) tested the CED metric using

complex imagery, such as the photograph of LENA. They reported similar results,

however, they also found that the metric did not perform equally well across different

images. When two distinct images with the same CED value are presented, subjects

do not perform equally well in terms of discrimination between original and

compressed images. This result indicates that the metric will not perform well with

changes in image content.

Pixel-based metrics have not been as successful as MTF-based measures of image

quality at predicting human performance and less attention has been paid to these

metrics by researchers. Snyder (1985) pointed out that these metrics are not

supported by empirical vision research. Furthermore, they have not been evaluated

for compressed images. New metrics need to be developed and systematically

evaluated.
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SECTION IV - EMPIRICAL MODELLING

The image quality metrics described above are based on a theoretical approach which

details information about the images or imaging system and include quantitative

information about the visual system through a visual model. An alternative approach

is to develop a pool of possible image quality predictors and determine empirically

which predictors define image quality. This approach has been taken by Snyder and

Maddox (1978), Kuperman (1985) and Decker (1989).

For example, Decker (1989) investigated the effects of spatial luminance

nonuniformities on perception. The nonuniformities were described in terms of spatial

frequency, modulation, gradient shape, and dimension. The descriptions of the

nonuniformities were regressed against subjective impressions of the nonuniformities.

(Data were collapsed across all subjects). R2 values of 0.84 were found.

Kuperman (1985) used a vision spatial frequency channel model approach and

regression to develop a metric. Six aircraft images were filtered using seven Gaussian

filters with different center frequencies and bandwidths of 1.5 octaves. Subjects

were asked to provide interpretability ratings and confidence ratings for each of the

six aircraft images filtered by each of the gaussian filters (42 images). Regression

analysis was performed to predict interpretability ratings based on center frequency

of the filter. An R2 value of 0.562 was reported.
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The technique of multiple predictors describing the image quality metric has not

received enough attention. In addition to using the regression equation as the image

quality metric, regression analysis techniques can be used for variable screening to

determine what variables are important to image quality metric for specific task

measures. Researchers have primarily used linear regression techniques because of

their ease of use. Nonlinear regression techniques may be applicable. The primary

drawback to this technique is that the models are often task and situation specific;

however, this approach should not be ruled out.
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SECTION V - HUMAN PERFORMANCE MEASURES

The purpose of image quality metrics is to provide a quantitative method for predicting

human performance or human perceptions of images. The use of subjective

impressions of quality or objective performance measures depends on the purpose for

which the image is intended. For example, medical images require information

extraction in which case a metric that correlates to objective performance is needed.

For a television picture, subjective impressions of the image are enough for

determining customer satisfaction. In most cases, metrics have been used primarily

to predict subjective impressions. If subjective impressions correlate well with

performance then it is feasible to use the subjective data. For example, the NATO

scale for photointerpretations was found to correlate well with information extraction

(Snyder, Shedivy, and Maddox, 1981). However, subjective measures do not always

correlate well with performance, and subjective techniques are not very robust. A

metric that is not dependent upon the performance measure would be ideal.

However, researchers have not focused on irvestigating and determining good

performance measures. In some cases, the ability of a metric to predict performance

may be due to the fact that the performance measure does not have construct

validity. That is, the measure is not tapping into the construct that it is intended to

measure. Therefore, research investigating the various performance measures is

necessary.
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It should also be noted that the metrics developed to date model early stages of the

visual process and do not include the higher level cognitive processing. Modelling

these processes is difficult. To develop a reliable, predictable metric models of

cognitive processing should also be investigated.
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SECTION VI - RECOMMENDATIONS

There are two general categories of metrics, those that evaluate the entire MTF

response of a system unrelated to the image content, and those which are image

dependent. Image processing researchers use image dependent metrics which have

not had the same success as image independent metrics. Huwever, for development

of a metric for digitally compressed images, the image dependent metrics may be

appropriate because the effect of the display hardware is not the only factor

contributing to the quality of the image. Published image quality metrics have not

been systematically applied to digitally compressed imagery. Listed below are

recommendations based on the literature review.

1. Apply published metrics to digitally compressed imagery. The MTFA,

SN, and IC metric computed as image dependent metrics should be

investigated and compared to MSE type metrics.

2. Evaluate nonlinear visual models (eg., Hall and Hall, 1971). If the

compressed image is transformed through the visual model, then output

from the model could be correlated with human performance data. Such

an approach would be time consuming and more complicated than using

the metrics described in this report. In addition, without adding a

cognitive component to the models, results are unlikely to be much

different than current metrics.

3. New metrics should be developed and evaluated that take into
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consideration higher levels of cognitive processing.

4. Research should also be focused on investigating the performance

measures that are to be correlated with metrics to determine if the

correlations change as the performance measure is changed.

The lack of any new or unique research in the past 10 years indicates that there is a

need for investigation into innovative approaches to the problem of image quality

metrics.
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